import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure() ax = Axes3D(fig) # X, Y value X = np.arange(-4, 4, 0.25) Y = np.arange(-4, 4, 0.25) X, Y = np.meshgrid(X, Y) R = np.sqrt(X ** 2 + Y ** 2) # height value Z = np.sin(R)
ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=plt.get_cmap('rainbow')) """ ============= ================================================ Argument Description ============= ================================================ *X*, *Y*, *Z* Data values as 2D arrays *rstride* Array row stride (step size), defaults to 10 *cstride* Array column stride (step size), defaults to 10 *color* Color of the surface patches *cmap* A colormap for the surface patches. *facecolors* Face colors for the individual patches *norm* An instance of Normalize to map values to colors *vmin* Minimum value to map *vmax* Maximum value to map *shade* Whether to shade the facecolors ============= ================================================ """
# I think this is different from plt12_contours ax.contourf(X, Y, Z, zdir='z', offset=-2, cmap=plt.get_cmap('rainbow')) """ ========== ================================================ Argument Description ========== ================================================ *X*, *Y*, Data values as numpy.arrays *Z* *zdir* The direction to use: x, y or z (default) *offset* If specified plot a projection of the filled contour on this position in plane normal to zdir ========== ================================================ """