pytorch搭建ResNet识别CIFAR10数据集

导包

1
2
3
4
5
6
7
8
9
import os
import torch
import torchvision
import torch.nn as nn
import numpy as np
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
from tensorboardX import SummaryWriter
from torchviz import make_dot

定义参数

1
2
3
4
5
6
7
8
9
# Device configuration
os.environ["CUDA_VISIBLE_DEVICES"] = "9"
device = torch.device('cuda:9' if torch.cuda.is_available() else 'cpu')

# Hyper parameters
num_epochs = 80
num_classes = 10
batch_size = 100
learning_rate = 0.001

图片预处理

1
2
3
4
5
transform = transforms.Compose([
transforms.Pad(4),
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(32),
transforms.ToTensor()])

导入CIFAR10数据集,定义数据加载器

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# CIFAR-10 dataset
train_dataset = torchvision.datasets.CIFAR10(root='data/cifar10/',
train=True,
transform=transform,
download=False)

test_dataset = torchvision.datasets.CIFAR10(root='data/cifar10/',
train=False,
transform=transforms.ToTensor())

# Data loader
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)

test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False)

定义网络

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# 3x3 convolution
def conv3x3(in_channels, out_channels, stride=1):
return nn.Conv2d(in_channels, out_channels, kernel_size=3,
stride=stride, padding=1, bias=False)

# Residual block
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1, downsample=None):
super(ResidualBlock, self).__init__()
self.conv1 = conv3x3(in_channels, out_channels, stride)
self.bn1 = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(out_channels, out_channels)
self.bn2 = nn.BatchNorm2d(out_channels)
self.downsample = downsample

def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out

# ResNet
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=10):
super(ResNet, self).__init__()
self.in_channels = 16
self.conv = conv3x3(3, 16)
self.bn = nn.BatchNorm2d(16)
self.relu = nn.ReLU(inplace=True)
self.layer1 = self.make_layer(block, 16, layers[0])
self.layer2 = self.make_layer(block, 32, layers[1], 2)
self.layer3 = self.make_layer(block, 64, layers[2], 2)
self.avg_pool = nn.AvgPool2d(8)
self.fc = nn.Linear(64, num_classes)

def make_layer(self, block, out_channels, blocks, stride=1):
downsample = None
if (stride != 1) or (self.in_channels != out_channels):
downsample = nn.Sequential(
conv3x3(self.in_channels, out_channels, stride=stride),
nn.BatchNorm2d(out_channels))
layers = []
layers.append(block(self.in_channels, out_channels, stride, downsample))
self.in_channels = out_channels
for i in range(1, blocks):
layers.append(block(out_channels, out_channels))
return nn.Sequential(*layers)

def forward(self, x):
out = self.conv(x)
out = self.bn(out)
out = self.relu(out)
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.avg_pool(out)
out = out.view(out.size(0), -1)
out = self.fc(out)
return out

model = ResNet(ResidualBlock, [2, 2, 2]).to(device)

# 使用tensorboard可视化网络
# writer = SummaryWriter(logdir="logs/",comment="myresnet")
# with writer:
# writer.add_graph(model,input_to_model=torch.rand(20,3,32,32))

# 使用pytorchviz可视化网络
# x = torch.rand(20,3,32,32)
# y = model(x)
# make_dot(y,params=dict(model.named_parameters()))

定义损失函数和优化器

1
2
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

更新学习率

1
2
3
def update_lr(optimizer, lr):    
for param_group in optimizer.param_groups:
param_group['lr'] = lr

训练模型

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
total_step = len(train_loader)
curr_lr = learning_rate
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
images = images.to(device)
labels = labels.to(device)

# Forward pass
outputs = model(images)
loss = criterion(outputs, labels)

# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()

if (i+1) % 100 == 0:
print ("Epoch [{}/{}], Step [{}/{}] Loss: {:.4f}"
.format(epoch+1, num_epochs, i+1, total_step, loss.item()))

# Decay learning rate
if (epoch+1) % 20 == 0:
curr_lr /= 3
update_lr(optimizer, curr_lr)

测试模型

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
model.eval()
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()

print('Accuracy of the model on the test images: {} %'.
format(100 * correct / total))

# Save the model checkpoint
# torch.save(model.state_dict(), 'resnet.ckpt')