知识点
OpenCV在DNN模块中提供了基于残差SSD网络训练的人脸检测模型,该模型分别提供了tensorflow版本,caffe版本,torch版本模型文件,其中tensorflow版本的模型做了更加进一步的压缩优化,大小只有2MB左右,非常适合移植到移动端使用,实现人脸检测功能,而caffe版本的是fp16的浮点数模型,精准度更好。要先获得这些模型,只要下载OpenCV4.0源码之后,
打开运行sources\samples\dnn\face_detector\download_weights.py该脚本即可。
同样一张图像,在OpenCV HAAR与LBP级联检测器中必须通过不断调整参数才可以检测出全部人脸,而通过使用该模型,基本在Python语言中基于OpenCV后台的推断,在25毫秒均可以检测出结果,网络支持输入size大小为300x300。
代码(c++,python)
1 |
|
1 | """ |